Monadic Left Shoe means
1(2 3) ┌─┬───┐ │1│2 3│ └─┴───┘ ⊂ 1(2 3) ┌───────┐ │┌─┬───┐│ ││1│2 3││ │└─┴───┘│ └───────┘ ⊂⊂ 1(2 3) ┌─────────┐ │┌───────┐│ ││┌─┬───┐││ │││1│2 3│││ ││└─┴───┘││ │└───────┘│ └─────────┘
Dyadic Left Shoe means
If ⎕ML<3 Partitioned Enclose
0 1 0 1 ⊂ 1 2 3 4 ┌───┬─┐ │2 3│4│ └───┴─┘
If ⎕ML≥3 Partition
0 1 0 1 ⊂ 1 2 3 4 ┌─┬─┐ │2│4│ └─┴─┘